
The
MonoGame
Community.
Wiki

Game
Jam
Manual [001]

{1}

{2}

Game Design Document
This part of the book covers the

aspects a GDD covers.

{3}

You can use a physical notepad, a
digital notepad file or a Word
Document file, whatever you

choose, be sure it is easily
accessible wherever you are so

that you can add to it as and when
needed, a more advanced editor

such as a Word Document, can give
more flexibility as you can include

images too.

Personally, I use Affin�ty Publisher.

{4}

Title: The name of the game
Whether you have a name already

or not, always have at least a
Project name.

Project X makes a good stand in.

A useful method to use is, maybe
the Jam theme, if it does not work,

a random �tle/project name
generator could help too.

But having a name to use while
developing can help you connect
with the project on a deeper level
and develop a focused interest to

drive it forward.

{5}

Genre: The type of game, such as
pla�ormer, puzzle, shooter, etc.

This helps focus the direc�on and
mechanics of the project, as well as
help you allocate a store category

when distribu�ng.

Combining genres is useful to
capture a larger market, but being
focussed on one genre can pay off

too, be sure to list every aspect and
then isolate the core aspects and use
those words to describe the project.

Remember to start a document to
keep track going forward.

{6}

Target Audience: The intended
players of the game, such as casual,

hardcore, children, adults, etc.

Say you were making a puzzle
game, with anime characters, now

the decision on if this was for grown
ups or kids under typically 15 years

of age, you may want to decide
based on the style of the

characters, also, hardcore can
include very difficult to play games

which can alienate your player base.
Making casual games can pay off too!

{7}

Pla�orm: The device or system
that the game will run on, such as

PC, mobile, console, web, etc.

It is crucial to understand the
target pla�orm, its input

availability, its hardware specifics,
capabili�es, and distribu�on

op�ons; all of these can play a core
role in your project setup.

Typically a Game Jam is for PC
distribu�on, if you find yourself
being a Mac developer, consider

installing Windows in a VM/second
system so that you can test your
app for both Windows and Linux.

{8}

Core Gameplay: The main
mechanics and features of the

game, such as movement, combat,
puzzles, explora�on, etc.

Understanding this aspect of your
game, can help you specify a whole

lot with the game engine
development, the code structure,

the elements you choose to
develop, and the manner of

connec�ng it all together.

{9}

Art Style: The visual aesthe�c of
the game, such as realis�c,

cartoon, pixel art, etc.

This aspect will decide the pipeline
going forward, a 2D versus 3D
pipeline carry vastly different
processes and can carry �me

penal�es on both sides if you are
not aware of their individual
peculiari�es, and going for a

specific aeste�c by use of Shaders
can have its own traps to trip you
in your progress, be sure to keep

things basic un�l you have a
Minimum Viable Product MVP.

{10}

Sound and Music: The audio
elements of the game, such as

sound effects, background music,
voice ac�ng, etc.

Picture yourself standing in the
middle of the city, close your eyes,
what do you hear? A car passing
by, the wind rustling the trees,

people cha�ng on a bench in front
of you, a dog barking at the youths,
now inverse the senses, open your
eyes and block your ears, how does

it feel? Off right? This is what
sound, and music, and voice;

do for your game.

Find your rustling trees, your
barking dogs, and passing cars.

{11}

Story and Characters: The
narra�ve and personali�es of the

game, such as plot, se�ng, theme,
protagonist, antagonist, etc.

How do you intend to drive the
game forward for the player?

Ac�on? Choices? Puzzle Solved?
Is there a storyline the player
needs to follow and absorb?

When or where is the game set?
Earth? Space? 42BC? 1066? 2077?
Whatever you choose, s�cking to a

basic variant can help you direct
the art style, simplicity is not

always easy, but worth aiming for
should the �me budget allow it.

{12}

Level Design: The structure and layout
of the game world, such as maps,

rooms, obstacles, enemies, items, etc.

It helps to create hand sketches of
these and having them in front of you
at all �mes for quick reference, it is no
use if your protagonist enters a castle

and is suddenly on a sandy beach!
Items, and obstacles will also help

you keep the environment in mind,
a candle in a spaceship will feel

awkward, but a torch in a dungeon
will also feel out of place.

Let the elements dictate the
environment, and direct the player.

{13}

User Interface: The elements that
communicate informa�on and
feedback to the player, such as
menus, bu�ons, icons, health

bars, score counters, etc.

Hey, how did I get here? Oh that’s
right, I clicked the pause bu�on on
the screen, which clicked back at

me, then I clicked Help, and here I
am looking at how the game works.

So, my ammo is doing ok, health
needs some work, the backpack
will help with that, and oh the

menu has a slider to move up and
down the content of the backpack.
Be sure to keep menus simple and

clear to read, images go a long way.

{14}

Example:
A game design document for a

pla�ormer game could look like this:

{15}

Title:
Super Jump Man

Genre:
Pla�ormer

Target Audience:
Casual players of all ages

Pla�orm:
Mobile

{16}

Core Gameplay:
The player controls a character
who can jump and run across
pla�orms and avoid enemies and
hazards. The goal is to reach the
end of each level without dying.
The game has power-ups that give
the character special abili�es, such
as double jump, invincibility, speed
boost, etc.

{17}

Art Style:
Pixel art with bright colors and
simple shapes

{18}

Sound and Music:
Retro-style chiptune music and
sound effects

{19}

Story and Characters:
The character is a plumber who
must rescue his girlfriend from an
evil turtle king who kidnapped her.
The game has humorous dialogue
and cutscenes between levels.

{20}

Level Design:
The game has 10 levels with
different themes and challenges.
Each level has coins to collect and
hidden secrets to find. Some levels
have boss fights at the end.

{21}

User Interface:
The game has a simple touch screen
interface with two bu�ons for
jumping and running. The game
shows the number of lives, coins and
power-ups on the top of the screen.

{22}

~

{23}

Technical Game Document

This part of the book covers the
aspects a TDD covers.

{24}

Engine:
The so�ware tool or framework that
the game is built with, such as Unity,

Unreal Engine, MonoGame, etc.

Remember, what you put together
is the engine, if something loads a
file, that is part of the engine, if it
draws to the screen, that is part of

the engine, how you piece it
together, is what results in the end
product, and that is what you ship.

{25}

Programming Language:
The coding language that the game
is wri�en in or uses for scrip�ng or

logic, such as C#, C++, Python,
JavaScript, etc.

{26}

Assets:
The resources that the game uses
for its graphics, sound and music.

These can be created by the
developers or obtained from

external sources. They should be
compa�ble with the engine and

pla�orm.
Remember, to speed things up,
grab asset packs, remember to

replace them with custom assets
before distribu�ng, if this is for a

game jam, you get kudos points for
finding the �me or a team to create
custom assets, but remember, the
immersion is the mechanics first,

spend �me on that.

{27}

Libraries and Plugins:
The addi�onal so�ware components

that the game uses to add
func�onality or features that are not
provided by the engine or language.
These can be official or third-party.

They should be compa�ble with the
engine and pla�orm.

Physics, Sound, Asset Loading.
Usually a DLL, or an adjoined

project, you can always cra� your
own added features, say a VR

component to enable VR
capabili�es in your game, but for a

game jam, this may be excessive
work unless you have done it

before, try to use ready to go kits in
order to save �me and effort.

{28}

Dependencies and Requirements:
The so�ware or hardware

components that the game needs to
run properly or op�mally. These can
include opera�ng system versions,

device specifica�ons, network
connec�ons, storage space etc.

.Net frameworks to men�on one,
but anything you might need
should be discoverable in the

NUGET panel, try to keep on top of
dependencies as they can

completely destroy your workflow
if you are unable to export them
and link them up correctly, the

fewer, the be�er.

{29}

Tes�ng and Debugging:
The methods and tools that the

developers use to check for errors
or bugs in the game code or

assets. These can include
debuggers,

 profilers,

 loggers,

 unit tests,

 etc.
Remember to implement your own
logging tools, a simple one is a text
file that is wri�en to using a new

line entry method, and clearing the
file for each fresh launch.

{30}

Distribu�on and Deployment:
The methods and tools that the
developers use to package and

publish the game for its intended
pla�orm or audience.

These can include:
 compilers,

 exporters,

 installers,

 launchers,

 etc.

{31}

Example:
A technical game document for a

pla�ormer game could look like this:

{32}

Engine:
MonoGame Custom Engine

{33}

Programming Language:
C#

{34}

Assets:

{35}

Graphics:
Pixel art sprites created with

Aseprite

{36}

Sound and Music:
Chiptune music and sound effects

created with BeepBox

{37}

Libraries and Plugins:

MonoGame.Extended:
A plugin for expanding the base

MonoGame methods

MLEM:
A set of mul�purpose libraries for

MonoGame that provide abstrac�ons,
quality of life improvements and

addi�onal features

{38}

Dependencies and Requirements:

Opera�ng System:
Android 4.4 or higher

Device Specifica�ons:
Minimum 1 GB RAM and 150 MB

storage space

Network Connec�on:
Not required

{39}

Tes�ng and Debugging:

Debugger:
Visual Studio Debugging

Profiler:
DirectX Graphics Profiler

Logger:
Debug output text file

Unit Tests:
Visual Studio MSTest, Nunit, xUnit, etc.

{40}

Distribu�on and Deployment:

Compiler:
Visual Studio Build Compiler

Exporter:
Visual Studio Release Profile

Android Package

Installer:
APK file

Launcher:
Android device or emulator

{41}

{42}

{43}

{44}

{45}

{46}

{47}

{48}

{49}

{50}

{51}

{52}

{53}

{54}

{55}

{56}

{57}

{58}

{59}

{60}

{61}

{62}

{63}

{64}

{65}

Looking to participate in a
Game Jam?

Want to make sure you start
hitting the floor running?

Want to keep focused and
driven?

Need a guidebook to help you
with all of that?

Whether it is your first time,
second time, or nth time, this
manual will help you!

Well, it will try.

Focusing on GDDs and TDDs,
this manual will walk you
through the process.

Use it or skip it, the choice is yours.

www.monogamecommunity.wiki

{66}

